UNITESS GPS TESTING LAB

Hardware & and software system for comparative analysis of GPS modules and chip antennas from different manufacturers

UNITESS GPS TESTING LAB BENEFITS

- Comparative analysis of chipsets from different manufacturers in order to select the optimal supplier by price-quality ratio based on the initial tests;
- Automated creation of Test Protocols;
- Saving Test Protocols in Database for further analysis;
- Comparative tests of devices with different layouts, different battery types, in different material cases.
- Quality Control at Output
- GOST 55534 compliance testing
- eCall and ERA-Glonass modules testing.

TESTING PARAMETERS

- GPS Devices precision estimation in Static and Dynamic Modes;
- GPS Devices sensitivity in satellite search and retention mode;
- Time-To-First-Fix (TTFF) depends on the startup mode.

All parameters are checking in Static and Dynamic Modes using different scenarios.

ANTENNA TESTING

- 3D Antenna Radiation Pattern Reconstruction
- Antenna gain & frequency selectivity
- Standing Wave Ratio (VSWR).

SYSTEM COMPONENTS

- 1. UNITESS GNSS GENERATOR Satellite Signal Simulator;
- 2. Precision Calibrated Antenna;
- 3. RF Shielded room;
- 4. Motorized Rotating Device;
- 5. Test Scripts Software for modeling different scenarios;
- 6. The Automated Workplace for test execution and automatic report generation.

TESTING AREA

UNITESS GNSS GENERATOR

UNITESS GNSS GENERATOR FEATURES

- High-Frequency (HF) channels quantity 2;
- Simultaneously GLONASS and GPS signal emulation;
- GPS satellites quantity 12;
- 16-Bit DAC;
- Power error 0,5 dB;
- Frequency accuracy 20 ppb;
- Maximum generation bandwidth 40 MHz;
- Parasitic–free dynamic range (PFDR) 80 dB;
- Highly stable GPS Disciplined Reference Oscillators.

UNITESS GNSS GENERATOR SOFTWARE

- Software pre-configured for navigation devices testing.
- User-friendly interface.
- Learn how to work in 2 days.

UNITESS GNSS GENERATOR SOFTWARE KEY BENEFITS

- Imitation of the GPS device movement according to a predefined scenario;
- Generating high-speed ballistic trajectories with ability to set acceleration and jerk on different parts of the trajectory;
- Simultaneous emulation up to 12 GPS & 12 GLONASS satellites;
- GNSS Ephemerides and Almanacs downloads.

TURN-KEY AUTOMATED MEASUREMENT SYSTEM

Editable test scripts!

MOTORIZED ROTATING DEVICE

- UNITESS development for testing GPS modules and GNSS chip antennas;
- 2D and 3D far-field radiation patterns reconstruction;
- The upper part of the rotating device made of radio transparent material that minimizes signal distortion.

RF SHILDED ROOM

Radiation-absorbent material (RAM) to ensure magnetic field uniformity in the workspace

CALIBRATED ANTENNA

To create electromagnet field at certain point

UNITESS GPS TESTING LAB

Video:

https://youtu.be/QD4-6GXL1HM

TESTING DEVICES

SAMPLE TEST REPORT

HJI «3PA»

приложение в

и протоволу испытыей № 2015-08-18 / 2 от 15.10 2015

Регуль тальт испытаннё ображил № 1.

Проверка возможности приема и обработки навизационнах сигналов стандариной точности в диапазона L1 ГНСС ГЛОНАСС сценью определения воординатичестоположники и составляющих выпора скоросии транспортного средства.

Пувантребовняей ГОСТ Р 54620-2011

8.1.2,8.1.5

Пункт интодеван ГОСТ Р 55534-2013

5.1

Описание процедуры оцинам (проверки)	Допустичнай результег	Регупатит выполнения
Запустить сценедамі зовиталем гистью по сительня ГИСС глюнасс с параметрами транитория дипомиси, принеженнями в ГОСТ Р 55534, табина В2	Долины быть определены коор двенсы местопо пожения и составляющее вектора скорости УСВ, отобраниване которым помно зеаблюдеть зеа ПК	Кооринесты местоположения к составляющее вектора скорости. УСВ определения, ко стобрановие можно коблюдить но. ПК

Регультат иллигания положительный

Проверка полиожности приник и обработии налигационных сигналов стандартной точности в диагазоне L1 ГНСС GPS с целью определения поординит местоположения и составляющих вектора скорости транспортного

Пунктиребовняей ГОСТ Р 54620-2011 8.1.3,8.1.4 Пунстингодин ГОСТ Р 55534-2013 5.2

Описания процедуры оценки (проверки)	Допустимый результег	Регупитет выполнения
Запуснить сценарий инитицент только по списания ГИСС ОРS с перавитриям присовения, приведенными в ГОСТ Р 55334, лабини В В2	Должны быть определены коорденств инстоположения и соглальныци вектора скорости УСВ, отображими которых иновино наблюдить на ПК	Координсты местоположения и составляющие выгора скорости. УСВ определяющи, ко- стображения, можно изблагаеть на ПК

Результат илтыгания положилельный

НЛ «ЭРА»

Crp. E2

Проверка передачи в составе МНД информации о последнем известном иместого познавая ТС

Пунктиребовшей ГОСТ Р 54620-2011

814

Пунктингодин ГОСТ Р 55534-2013

~		-
	_	
5	3	
•	_	

	Описына процадуры оцияна (проверки)	Допустимый результат	Результег выполнения	
S SOU STORY MOUNTS	Запустить сценарай именарат по силотом ГНСС ГЛОНАСС и GPS солистию с тарымеровы провеждения привеждения в ГОСТ Р 55534 , табляце В2	Должны быть определены координаты местопо невыш и состыплющие лекторы скорости УСВ, отобрывание которысимо эно неблюдить на ПК	Коориненти тоголожения и составлявание вектора скорости УСВ определявания, их стобразоване можно набливания на ПК	

Регультег истытавия: положиваниямий

Проверка полиониюсяя выдачия по вышлине устройства выформации о налигационных параветрах в формете НМЕА-0183

Пунктиребований ГОСТ Р 54620-2011 Пункат методраж ГОСТ Р 55534-2013

Описмен: процедуры: оцинан (проверан)	Допусияный результег	Регультег выполняющ	
	Навигационная информация должна быта получена по протоколу НМЕА-0183	Нажизановная информация получена по протоколу НМЕА 0183 и пециофровина	

на падрегу сообщений NMEA-0183 (coofmann RMC, GGA, VIG, GSAR GSV).

Запусингъ спенфия CHIMATOR

ГИСС ГЛОНАСС/ВРБс пфинтрин,

препединскими и ГОСТ P 55534, Tabmen B.1

Регультат испытания: положилельный

ПРИЛОЖЕНИЕ В К ПРОТОКОЛУ ИСПЫТАНИЙ № 2015-08-18 / 2 Дим: 17.08.2015

«ONE BUTTON» SOLUTION

- connect equipment to a PC;
- select the corresponding task from the list;
- Click START and follow the instructions (mode selection, parameters setting, equipment switching, channel switching, etc.).

At the end of measurements a protocol in MS Word and / or PDF format will be compiled and sent to the database.

TESTING IN DYNAMIC MODE

- According to our experience, a large number of chipsets do not pass tests in dynamic mode for compliance testing with GOST 55534.
- Our system allows to carry out the tests in dynamic mode and check whether the modules complies with the declared characteristics.

OUR EXPERIENCE

- A large number of GPS/GLONASS chipsets of different manufacturers have been tested at UNITESS workstations.
- Our automated workplaces used in many Test Laboratories over the world to conduct preliminary tests of the ERA-GLONASS and eCall systems.

MORE THAN 50 IMPLEMENTED PROJECTS

International

- Qualcomm (USA)
- FORD (USA)
- CETECOM (Germany)
- European GNSS Agency (GSA)
- CAICT (China)

RUSSIA

- Rostest, Moscow
- Test-Saint Petersburg
- Moscow region Center of Standardization and Metrology
- Nizhny Novgorod Center of Standardization and Metrology
- Northern Shipbuilding and Repair Center

BELARUS

- BELLIS Testing and Certification of Home Appliances and Industrial Products
- Belarusian State Institute of Metrology (BelGIM)
- Republican Unitary Enterprise Beltelecom
- JSV Giprosvjaz
- Armed Forces Metrological Service of the Belarus

UNITESS GNSS GENERATOR passed the tests at the European GNSS Institute (GSA)

Global Navigation
Satellite Systems
Agency

www.unitess.pro www.unitess.ru